z^4+(4-2i)z^2+8i=0

Simple and best practice solution for z^4+(4-2i)z^2+8i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^4+(4-2i)z^2+8i=0 equation:


Simplifying
z4 + (4 + -2i) * z2 + 8i = 0

Reorder the terms for easier multiplication:
z4 + z2(4 + -2i) + 8i = 0
z4 + (4 * z2 + -2i * z2) + 8i = 0

Reorder the terms:
z4 + (-2iz2 + 4z2) + 8i = 0
z4 + (-2iz2 + 4z2) + 8i = 0

Reorder the terms:
8i + -2iz2 + 4z2 + z4 = 0

Solving
8i + -2iz2 + 4z2 + z4 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-4z2' to each side of the equation.
8i + -2iz2 + 4z2 + -4z2 + z4 = 0 + -4z2

Combine like terms: 4z2 + -4z2 = 0
8i + -2iz2 + 0 + z4 = 0 + -4z2
8i + -2iz2 + z4 = 0 + -4z2
Remove the zero:
8i + -2iz2 + z4 = -4z2

Add '-1z4' to each side of the equation.
8i + -2iz2 + z4 + -1z4 = -4z2 + -1z4

Combine like terms: z4 + -1z4 = 0
8i + -2iz2 + 0 = -4z2 + -1z4
8i + -2iz2 = -4z2 + -1z4

Reorder the terms:
8i + -2iz2 + 4z2 + z4 = -4z2 + 4z2 + -1z4 + z4

Combine like terms: -4z2 + 4z2 = 0
8i + -2iz2 + 4z2 + z4 = 0 + -1z4 + z4
8i + -2iz2 + 4z2 + z4 = -1z4 + z4

Combine like terms: -1z4 + z4 = 0
8i + -2iz2 + 4z2 + z4 = 0

The solution to this equation could not be determined.

See similar equations:

| 1.25=sin(x)-2cos(x) | | z=49-z | | 9x+15=0 | | 0.27+0.3+0.72= | | X•1/3 | | y=-4x^2+24x | | 2+7(x-1)=5x+3 | | 50=12x+14 | | (8x)/(2)×(x^5)/(4x^2) | | 10-(4z-9)=6-5x | | 8x/2×x^5/4x^2 | | 7=8+f | | -(2-3x)-x=9-x | | 45/X=9 | | 8x=0.582 | | 9-(3z-9)=5-4x | | x^2+5x+106=0 | | (6+4x)/2-5=x+2 | | 7x+4+9x+3=180 | | 1/2(110-5x)=30 | | 36=2x^2-12x+36 | | 110-5x=15 | | 24x+4=6x+6 | | 2x+6-1=2+12 | | tan(4x)=-1 | | 12(n+60)=144 | | 4z+2=-5-3 | | ((8x^3)/(2x))^2 | | 3(2+4x)-2x=20+5x | | 12-3(x+1)+6x=-(x-15) | | 4.9=30 | | 4p-13p-p=-13 |

Equations solver categories